A Generation of Special Triangular Boundary Element Shape Functions for 3D Crack Problems
نویسندگان
چکیده
منابع مشابه
The Dual Boundary Element Method: Effective Implementation for Crack Problems
The present paper is concerned with the effective numerical implementation of the two-dimensional dual boundary element method, for linear elastic crack problems. The dual equations of the method are the displacement and the traction boundary integral equations. When the displacement equation is applied on one of the crack surfaces and the traction equation on the other, general mixed-mode crac...
متن کاملTime-Discontinuous Finite Element Analysis of Two-Dimensional Elastodynamic Problems using Complex Fourier Shape Functions
This paper reformulates a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions, called complex Fourier hereafter, for solving two-dimensional elastodynamic problems. These shape functions, which are derived from their corresponding radial basis functions, have some advantages such as the satisfaction of exponential and trigonometric function fields in comple...
متن کاملDual Boundary Element Method Applied to Antiplane Crack Problems
This paper is concerned with an efficient dual boundary element method for 2d crack problems under antiplane shear loading. The dual equations are the displacement and the traction boundary integral equations. When the displacement equation is applied on the outer boundary and the traction equation on one of the crack surfaces, general crack problems with anti-plane shear loading can be solved ...
متن کاملA General Boundary Element Formulation for The Analysis of Viscoelastic Problems
The analysis of viscoelastic materials is one of the most important subjects in engineering structures. Several works have been so far made for the integral equation methods to viscoelastic problems. From the basic assumptions of viscoelastic constitutive equations and weighted residual techniques, a simple but effective Boundary Element (BE) formulation is developed for the Kelvin viscoelastic...
متن کاملA simple Galerkin boundary element method for three-dimensional crack problems in functionally graded materials
This paper presents a Galerkin boundary element method for solving crack problems governed by potential theory in nonhomogeneous media. In the simple boundary element method, the nonhomogeneous problem is reduced to a homogeneous problem using variable transformation. Cracks in heat conduction problem in functionally graded materials are investigated. The thermal conductivity varies parabolical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2020
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2020/4629761